VII - Standard Models of Trade Theory Under Imperfect Competition

Part 1: The Krugman Model

Gregory Corcos

Ecole polytechnique

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

- The Krugman (1980) model illustrates gains from trade that result from increased product variety.
- This complements our analysis of economies of scale and the pro-competitive effect of trade.
- Extension of the closed-economy model of Dixit and Stiglitz (1977).
- The model predicts how prices, quantities, number of varieties, wages and welfare are affected by trade liberalization.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consumption (Dixit-Stiglitz)

- Representative household supplying L units of labor and owning all firms.
- CES preferences over a continuum of varieties Ω:

$$\max_{q(\omega)} U = \max_{q(\omega)} \left(\int_{\Omega} q(\omega)^{\frac{\sigma-1}{\sigma}} d\omega \right)^{\frac{\sigma}{\sigma-1}}$$

s.t. $\int_{\Omega} p(\omega)q(\omega)d\omega = wL$

with σ > 1 the elasticity of substitution between varieties.
Utility maximization yields the demand function:

$$q(\omega) = \left(rac{p(\omega)}{P}
ight)^{-\sigma}rac{wl}{P}$$

with $P = \left(\int_{\Omega} p(\omega)^{1-\sigma} d\omega
ight)^{rac{1}{1-\sigma}}$

Details on the demand function

Interpretation of P: ideal price index

- P is the "ideal price index", in the sense that an extra unit of utility costs P extra units of income.
- Proof: plug demand functions into the utility function

$$U = \left(\int_{\Omega} q(\omega)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}} = \left(\int_{\Omega} \left(\frac{p(\omega)}{P}\right)^{-\sigma \frac{\sigma-1}{\sigma}} \left(\frac{wL}{P}\right)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}}$$
$$= \frac{wL}{P} P^{\sigma} \left(\int_{\Omega} p(\omega)^{1-\sigma} d\omega\right)^{\frac{\sigma}{\sigma-1}} = \frac{wL}{P}$$

If both nominal income wL and the price index P increase by x%, utility remains unchanged.

Interpretation of P: love of variety

- No matter how high the price of variety ω, there will be some positive demand for ω.
- Since σ > 1, the ideal price index P is lower than the simple average of prices p(ω):

$$P = \left(\int_{\Omega} p(\omega)^{1-\sigma} d\omega
ight)^{rac{1}{1-\sigma}} < \int_{\Omega} p(\omega) d\omega$$

- This captures the consumer's love of variety: consuming all varieties in the optimal bundle gives more utility than consuming a single variety at the average price.
- ► For a given nominal income *wL* and average price, increased product diversity lowers price index *P* and increases welfare.

- Each firm has monopoly over a variety ω which is imperfectly substitutable with other varieties (monopolistic competition).
- Fixed cost: to produce $q(\omega)$ firms need $f + \frac{q(\omega)}{\varphi}$ labor units
- Optimal price: $p = \frac{\sigma}{\sigma 1} \frac{w}{\varphi}$ Details on the optimal price

• **Profit**:
$$\pi(\omega) \equiv p(\omega)q(\omega) - w\left(f + \frac{q(\omega)}{\varphi}\right) = w\left(\frac{q(\omega)}{(\sigma-1)\varphi} - f\right)$$

- Free entry: $\pi(\omega) = 0 \Rightarrow q(\omega) = (\sigma 1)\varphi f$
- \Rightarrow All firms have the same quantity and price (ω now omitted)
 - Labor market equilibrium: n such that

$$n\left(f+\frac{q}{\varphi}\right)=L \Rightarrow n=\frac{L}{\sigma f}$$

⇒ The number of firms increases with market size (*L*) and decreases with fixed costs (*f*) and competition (σ).

Back to the price index

Equilibrium price index:

$$P = \left(\int_{\Omega} \left(\frac{\sigma}{\sigma-1}\frac{w}{\varphi}\right)^{1-\sigma} d\omega\right)^{\frac{1}{1-\sigma}} = \frac{\sigma}{\sigma-1}\frac{w}{\varphi}n^{\frac{1}{1-\sigma}}$$

is decreasing in the number of varieties

At the equilibrium value of n:

$$P = \frac{\sigma}{\sigma - 1} \frac{w}{\varphi} \left(\frac{L}{\sigma f}\right)^{\frac{1}{1 - \sigma}}$$

Larger economies have lower P's and higher welfare in autarky.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Opening the economy

- Consider two identical countries except for their size: L, L^* .
- Transport costs are of the Samuelson "iceberg" type: when 1 unit is shipped, $1/\tau$ units is received, with $\tau \ge 1$. $\tau 1$ represents the ad valorem trade cost.
- Optimal prices
 - Domestic market: $p^D = \frac{\sigma}{\sigma 1} \frac{w}{\varphi} \equiv p$
 - Foreign market: $p^X = \tau \frac{\sigma}{\sigma-1} \frac{w}{\varphi} = \tau p$
- The price before transport (FOB) is the same on both markets. The price at destination (CIF) includes the transport cost τ, which is fully passed on to the consumer.

Equilibrium in the Open Economy

• Prices
$$p^D = \frac{\sigma}{\sigma-1} \frac{w}{\varphi}$$
 and $p^X = \tau \frac{\sigma}{\sigma-1} \frac{w}{\varphi}$

- Total production: $q = q^D + \tau q^X$
- ► Total profit: $\pi = (p \frac{w}{\varphi})q^D + (\tau p \tau \frac{w}{\varphi})q^X wf = pq w\left(f + \frac{q}{\varphi}\right) = \frac{w}{(\sigma 1)\varphi}q wf$
- Free entry: $\pi = 0 \Rightarrow q = (\sigma 1) \varphi f$
- ► Labor market equilibrium: $n\left(f + \frac{q}{\varphi}\right) = L \Rightarrow n = \frac{L}{\sigma f}, n^* = \frac{L^*}{\sigma f}$

Price indices, wages

Predictions of the Krugman Model

- There is intra-industry trade even if countries are identical, so long as they produce different varieties.
- Prices indices are lower than in autarky, and therefore welfare is higher.
- There are more firms in the large country.
- Price indices are equal when τ = 1, but lower in the large country when τ > 1. Fewer varieties bear a transport cost (see Appendix).
- Wages are higher in the large country, which guarantees trade balance (see Appendix).

・ロト・日本・モート モー うへぐ

From Theory to Gravity Regressions

Value of aggregate exports: X = n\u03c6 pq^X(\u03c6 p) with:

$$q^{X}(\tau p) = \left(\frac{\tau p}{P^{*}}\right)^{-\sigma} \frac{w^{*}L^{*}}{P^{*}}$$
$$p = \frac{\sigma}{\sigma - 1} \frac{w}{\varphi}$$
$$n = \frac{L}{\sigma f}$$

$$\Rightarrow X = \frac{1}{\sigma f} \left(\frac{\sigma}{(\sigma - 1)\varphi} \right)^{1 - \sigma} LL^* \left(\frac{\tau w}{P^*} \right)^{1 - \sigma} w^*$$

or in log:

$$\ln X = -\ln(\sigma f) + (1-\sigma) \ln \frac{\sigma}{(\sigma-1)\varphi} + \ln L + \ln L^* + (1-\sigma) \ln \frac{\tau w}{P^*} + \ln w^*$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

From Theory to Gravity Regressions (2)

Gravity regressions (Tinbergen, 1962)
 Bilateral trade flows follow a 'gravity law' of the form

$$X_{ij} = G rac{(L_i)^lpha (L_j)^eta}{(D_{ij})^ heta}$$

 L_i : size of country *i*; D_{ij} : distance between *i* and *j*.

- The Krugman model is consistent with that finding if α = β = 1 and distance is a good proxy for bilateral transport costs τ (See PC).
- Transport costs affect trade along two 'margins':
 - increase in the number of available products (extensive margin)
 - increase in the value of export per product (intensive margin)

International Trade: The gravity equation

$$\ln X_{ij} = \\ a + \ln L_i + \ln L_j + (1 - \sigma) \ln \tau_{ij} + (1 - \sigma) \ln w_i - (1 - \sigma) \ln P_j + \ln w_j$$

	(1)	(2)	(3)	(4)	(5)	(6)
ln Pop, i	0.978 ^a	0.893 ^a	0.290 ^a			
	(0.006)	(0.009)	(0.046)			
ln Pop, j	0.837°	0.835 ^a	0.962^{a}			
	(0.006)	(0.008)	(0.040)			
$\ln \text{GDP}/\text{Pop}, i$	1.118 ^a	0.921 ^a	0.732^{a}			
	(0.007)	(0.010)	(0.015)			
$\ln \text{GDP/Pop}, j$	0.945°	0.702°	0.634ª			
	(0.007)	(0.010)	(0.015)			
ln Dist (avg)	-1.035 ^a	-1.197ª				
	(0.014)	(0.015)				
Shared Language	0.506 ^a	0.522 ^a				
	(0.034)	(0.038)				
Shared Legal Origins	0.313ª	0.160 ^a				
	(0.026)	(0.029)				
Colonial History	1.560 ^a	2.605^{a}				
	(0.380)	(0.206)				
RTA	0.958°	0.593^{a}	0.521^{a}	0.400 ^a	0.411ª	0.317^{a}
	(0.044)	(0.026)	(0.027)	(0.029)	(0.034)	(0.033)
Both GATT	0.125 ^a	0.155 ^a	0.159 ^a	0.244 ^a	0.368ª	0.206 ^a
	(0.020)	(0.016)	(0.017)	(0.038)	(0.041)	(0.042)
Currency union	0.688	0.483^{a}	0.486°	0.499 ^a	0.469*	0.309^{a}
	(0.091)	(0.064)	(0.068)	(0.047)	(0.056)	(0.089)
Tetrads:				GBR,FRA	USA,DEU	CHE,CAN
Fixed Effects:	None	Dyads(RE)	Dyads	Tetrads	Tetrads	Tetrads
# Obs.	618233	618233	618233	665531	651603	633190
RMSE	2.165	1.480	1.473	1.677	1.722	1.832

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Source: Head, Mayer and Ries (2008)

Welfare gains

• Autarky:
$$P = pn^{\frac{1}{1-\sigma}}$$
 and $P^* = p^*n^{*\frac{1}{1-\sigma}}$

• Open economy:
$$P = \left[p^{1-\sigma}n + (\tau p^*)^{1-\sigma}n^*\right]^{\frac{1}{1-\sigma}}$$
 and $P^* = \left[p^{* 1-\sigma}n^* + (\tau p)^{1-\sigma}n\right]^{\frac{1}{1-\sigma}}$

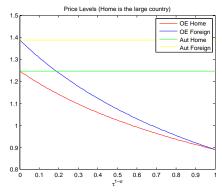
Without transportation costs:

$$P = P^* = (2np^{1-\sigma})^{\frac{1}{1-\sigma}} < (np^{1-\sigma})^{\frac{1}{1-\sigma}} \text{ since } \sigma > 1$$

- \Rightarrow Opening up the economy yields a welfare gain deriving from more diversity.
 - In Krugman (1979), trade has a pro-competitive effect too (fall in p due to a rise in σ).

Welfare Gains (2)

Prices as a function of the "freeness" of trade $\tau^{1-\sigma}$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Wages

Trade Balance:

$$\underbrace{\lambda \times L \times L^* \times \left(\frac{\tau w}{P^*}\right)^{1-\sigma} \times w^*}_{X} = \underbrace{\lambda \times L \times L^* \times \left(\frac{\tau w^*}{P}\right)^{1-\sigma} \times w}_{X^*}$$

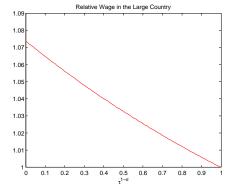
$$\Rightarrow \frac{w}{w^*} = \left(\frac{Lw^{1-\sigma} + L^*(\tau w^*)^{1-\sigma}}{L(\tau w)^{1-\sigma} + L^*w^{*-1-\sigma}}\right)^{1/\sigma}$$

- $\Rightarrow\,$ Without transport costs ($\tau=$ 1), wages are equalized across countries
- ⇒ With high transport costs $(\tau \to \infty)$: $\frac{w}{w^*} \to \left(\frac{L}{L^*}\right)^{\frac{1}{2\sigma-1}}$, ie wages are higher in the largest country

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Wages (2)

Relative wage in the large country, as a function of the "freeness" of trade $\tau^{1-\sigma}$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

17/25

Conclusions

- The model generates gains from trade resulting from increased product diversity.
- Absent transport costs, all consumers have access to all varieties, prices converge and trade is balanced.
- ▶ With a transport cost, the large country has lower prices (if L > L*, P < P*) and more varieties. Demand for imports is lower (increasing with P).
- ► Balanced trade requires lower exports of the large country, thanks to a higher marginal cost: w > w* Proof
- Extension with mobile workers: migration towards the large country makes it larger... This is the foundation of the 'new economic geography' (Krugman 1991).

Appendix

<□ > < @ > < E > < E > E のQ @

How to derive the demand function

► Lagrangian:
$$L = \left(\int_{\Omega} q(\omega)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}} - \mu \left(\int_{\Omega} p(\omega)q(\omega)d\omega - wL\right)$$

First order conditions:

$$\frac{\partial L}{\partial q(\omega)} = q(\omega)^{\frac{-1}{\sigma}} \left(\int_{\Omega} q(\omega)^{\frac{\sigma-1}{\sigma}} d\omega \right)^{\frac{1}{\sigma-1}} - \mu p(\omega) = 0$$

$$\Rightarrow \quad q(\omega)^{\frac{-1}{\sigma}} U^{\frac{1}{\sigma}} = \mu p(\omega)$$

$$\Rightarrow \quad q(\omega) = U \mu^{-\sigma} p(\omega)^{-\sigma}$$

• Budget constraint: $wL = \int_{\Omega} p(\omega)q(\omega)d\omega = U\mu^{-\sigma}\int_{\Omega} p(\omega)^{1-\sigma}d\omega$

• Define the price index $P = (\int_{\Omega} p(\omega)^{1-\sigma} d\omega)^{\frac{1}{1-\sigma}}$. The budget constraint is rewritten as

wL =
$$U\mu^{-\sigma}P^{1-\sigma}$$

• Note that wL = PU. P is the monetary value of one unit of utility.

How to derive the demand function (2)

From the budget constraint $wL = U\mu^{-\sigma}P^{1-\sigma}$ and the f.o.c. $q(\omega) = U\mu^{-\sigma}p(\omega)^{-\sigma}$, one obtains the demand function:

$$q(\omega) = \left(\frac{p(\omega)}{P}\right)^{-\sigma} \frac{wL}{P}$$

- Demand for variety ω increases with overall purchasing power wL/P, and decreases with the relative price of variety ω.
- σ is equal to
 - the price elasticity: a 1% rise in $p(\omega)$ reduces demand by σ %
 - ► the elasticity of substitution: since ^{q(ω)}/_{q(ω')} = (^{p(ω)}/_{p(ω')})^{-σ}, increasing the relative price of the ω variety by 1% reduces the relative demand for this variety by σ%

Back to main text

How to derive the optimal price

Start from the firm's profit function:

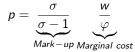
$$\pi(\omega) = p(\omega)q(\omega) - w\left(f + rac{q(\omega)}{arphi}
ight)$$

 \blacktriangleright Maximize with respect to price given demand and price index P

 \Rightarrow First order condition:

$$\frac{\partial \pi(\omega)}{\partial p(\omega)} = P^{\sigma-1} w L \left[(1-\sigma) p^{-\sigma} + \frac{w}{\varphi} \sigma p^{-\sigma-1} \right] = 0$$

Or after rearranging:



Price indices in a two-country world economy

The price index now writes:

$$P = \left(\sum_{\omega \in H} p(\omega)^{1-\sigma} + \sum_{\omega \in F} (\tau p^*(\omega))^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$$

▶ In the symmetric equilibrium, $p(\omega) = p$, $\forall \omega \in H$ and $p^*(\omega) = p^*$, $\forall \omega \in F$

$$\Rightarrow P = \left(np^{1-\sigma} + n^*(\tau p^*)^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$$

and $P^* = \left(n(\tau p)^{1-\sigma} + n^*p^{*(1-\sigma)}\right)^{\frac{1}{1-\sigma}}$

- Absent transportation costs (τ = 1), with identical countries, the two indices are equal: P = P* = (2n)^{1/1-σ} p. Both countries have access to the same varieties in the same conditions.
- ▶ Both indices are lower than those in autarky, which are: $P = n^{\frac{1}{1-\sigma}}p$ and $P^* = n^{\frac{1}{1-\sigma}}p^*$
- At given wages, opening up the economy has a positive impact on welfare (U = wL/P). This comes from consumers' preference for diversity

Wages in the Krugman model

- We have expressed optimal prices $p(\omega)$ and P as functions of nominal income wL.
- L is exogenous but w is endogenous
- ▶ The wage is determined by the goods market equilibrium equation. Due to Walras' law, it is equivalent to rely on (i) the domestic market $(wL = \sum_{\omega} wl(\omega))$; (ii) the foreign market $(w^*L^* = \sum_{\omega} w^*l^*(\omega))$; (iii) the trade balance $(X = X^*)$
- We use the trade balance:

$$\lambda \times L \times L^* \times \left(\frac{\tau w}{P^*}\right)^{1-\sigma} \times w^* = \lambda \times L \times L^* \times \left(\frac{\tau w^*}{P}\right)^{1-\sigma} \times w$$
$$\Rightarrow \quad \frac{w}{w^*} = \left(\frac{P}{P^*}\right)^{\frac{1-\sigma}{\sigma}}$$
with
$$\left(\frac{P}{P^*}\right) = \frac{np^{1-\sigma} + n^*(\tau p^*)^{1-\sigma}}{n(\tau p)^{1-\sigma} + n^* p^{*\,1-\sigma}}$$
$$\Rightarrow \quad \frac{w}{w^*} = \left(\frac{Lw^{1-\sigma} + L^*(\tau w^*)^{1-\sigma}}{L(\tau w)^{1-\sigma} + L^* w^{*\,1-\sigma}}\right)^{1/\sigma}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Wages in the Krugman model (2)

Relative imports:

$$\frac{M}{M^*} = \frac{n^*}{n} \left(\frac{\tau p^*/P}{\tau p/P^*}\right)^{1-\sigma} \frac{wL}{w^*L^*} = \frac{w}{w^*} \left(\frac{w^*/P}{w/P^*}\right)^{1-\sigma}$$

- ▶ Starting from the symetric equilibrium: $\frac{L}{L^*} = \frac{w}{w^*} = \frac{M}{M^*}$
- An increase in L/L^{*} increases the relative number of firms in H which reduces P/P^{*}. This makes foreign goods relatively more expansive → ↓ M/M^{*}
- For trade to be balanced, needs to be compensated by an increase in the relative wage w/w^{*} → ↑ M/M^{*} through an income effect (↑ aggregate demand) and a substitution effect (↓ relative competitiveness of domestically produced varieties)
- \Rightarrow Wages are relatively high in large countries Back to section 1