Chapter 6. Introduction to Trade Theory Under Imperfect Competition (Part 2)

Gregory Corcos

Ecole polytechnique

Outline

- In this part we will introduce the concept of monopolistic competition in a simple example.
- We will examine two situations :

1. autarky
2. perfect free trade

- In the next chapter we will study trade liberalization in the Krugman model.
- The example is taken from Krugman, Melitz and Obstfeld (2012), chapter 8.

Monopolistic competition

- 'Monopolistic competition' captures elements of monopoly and perfect competition :
- firms sell differentiated varieties of the same good
- they set a monopoly price for their variety
- but they take other varieties' prices (and other aggregates) as given.
- We will consider a simple example of a monopolistically competitive sector with n identical firms.
- The goal is to study the impact of trade liberalization on two endogenous variables:
- the price of a representative variety, p,
- the number of varieties n.
- Gains from trade through increased product diversity.

Demand

Each firm faces the same demand function

$$
Q=S\left[\frac{1}{n}-b(p-\bar{p})\right]
$$

- Q : firm sales,
- S: total industry sales,
- n : number of firms in the industry,
- p: firm price,
- \bar{p} : average industry price,
- $b>0$ captures the sensitivity of demand for a variety to its relative price.

Properties of the assumed demand function

$$
Q=S\left[\frac{1}{n}-b(p-\bar{p})\right] .
$$

- With identical prices, each firm has market share $\frac{S}{n}$.
- A firm with a higher price will have a lower market share, but may still sell.
- S is unaffected by the average price.

Monopoly Pricing

- Given the demand function, individual profits equal

$$
\Pi(p)=(p-c) S\left[\frac{1}{n}-b(p-\bar{p})\right]-F
$$

where $F>0$ denotes a fixed cost and $c>0$ denotes a variable cost.

- In monopolistic competition each firm solves $\max _{p} \Pi(p)$, taking \bar{p} as given, which yields

$$
p=\frac{\frac{1}{n}+b \bar{p}+b c}{2 b}
$$

- Since all firms have the same optimal price, $\bar{p}=p$ so that

$$
p=\frac{1}{b n}+c
$$

- Each firm produces $\frac{S}{n}$.

Figure: Price and the Number of Firms (1/2)

Economies of Scale

- The representative firm's average cost equals :

$$
A C=\frac{F}{Q}+c .
$$

- Since all firms have identical output $\left(Q=\frac{S}{n}\right)$ average cost equals

$$
A C=n \frac{F}{S}+c .
$$

\Rightarrow Average Cost is increasing in n, because each firms has lower output

- Free Entry Condition : entry and exit occur until profits equal zero
\Rightarrow In equilibrium price equals Average Cost.

Figure: Price and the Number of Firms (2/2)

Equilibrium number of firms

- Price $=A C$ due to free entry.
- We can solve for free entry equilibrium n, p and Q :

$$
\begin{aligned}
\frac{1}{b n}+c & =n \frac{F}{S}+c \Leftrightarrow n=\sqrt{\frac{S}{F b}} \\
p & =\frac{1}{b n}+c \Rightarrow p=\sqrt{\frac{F}{S b}}+c \\
Q & =\frac{S}{n} \Rightarrow Q=\sqrt{S F b}
\end{aligned}
$$

Effect of Trade Integration

- Consider identical national economies.
- Perfect integration of these economies is equivalent to an increase in S.
- Short-run effects (when n is fixed) :
- increase in production scale and decrease in AC
- no effect on price
- increase in profits
- Long-run effects :
- increase in the equilibrium number of firms n
- fall in the price of each variety p and of the industry average price \bar{p}
- an increase in the scale of production Q

Figure: Effect of Trade Integration

Figure: Effect of Trade Integration: Short- and Long-Run

Conclusion

- With internal economies of scale, trade integration allows firms to operate at a greater scale.
- But because of greater competition they must charge lower prices:
- In the short-run, there is a large price fall and firms make losses.
- In the long-run, some firms exit but the price remains lower than in autarky.
- Main predictions :
- consumers gain from trade because of lower prices and more varieties
- trade occurs within industries.
- This model complements HOS/Ricardo models.

